Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
An Acad Bras Cienc ; 95(suppl 3): e20230732, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38126385

RESUMO

Several studies have utilized passive microwave imagery for monitoring snowmelt in Antarctica. However, due to the low spatial resolution of these images (25 km), the quantification of snowmelt is not precise. To enhance the accuracy of these estimations, this study proposed a subpixel analysis approach based on a Spectral Linear Mixing Model. This approach was applied to images obtained from channels 18/19 GHz and 37 GHz, both horizontally and vertically polarized, acquired from the Scanning Multichannel Microwave Radiometer (SMMR), Special Sensor Microwave Imager (SSM/I), and Special Sensor Microwave Imager/Sounder (SSM/IS) instruments, spanning the period 1978-2018. The spatiotemporal analysis of the estimated snowmelt fraction images indicated that the most persistent and intensive melt was observed on the Antarctic Peninsula, particularly on the Larsen, Wilkins, George VI, and Wordie ice shelves. The melting period in the Antarctic Peninsula began in late October, with a peak in early January, and ended in late March. Other regions with persistent and intensive snowmelt were Mary Bird Land and Wilkes Land, followed by Dronning Maud Land, Amery Ice Shelf, Filchner-Ronne Ice Shelf, and Ross Ice Shelf. These snowmelt data are valuable for modeling the impacts of snowmelt on glacial systems, local coastal environments, and sea-level rise.


Assuntos
Micro-Ondas , Regiões Antárticas
2.
An Acad Bras Cienc ; 95(suppl 3): e20230342, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37937658

RESUMO

This study evaluated feasibility statistically and analyzed, during the freezing period, the relationship between brightness temperature (Tb) data of the 37V polarisation and the GR3719 (Gradient Ratio 37V and 19V) obtained by Special Sensor Microwave/Imager from F11 and F13 satellites with sea ice thickness (SIT) data obtained in the Weddell Sea through Antarctic Sea Ice Processes and Climate program. The multiple linear regression (MLR) was applied at 1,520 points, with 70% of these points being randomly separated to generate the MLR and 30% to carry out the validation. To perform the temporal mapping, the MLR was applied only to pixels with sea ice concentration (SIC) ≥ 90%, obtained through the fraction image calculated from the spectral linear mixing model (SLMM) using the Tb in the channels and polarizations 19H, 19V and 37V. The results of the SLMM validation process for estimating the SIC were σ = 10.5%, RMSE = 11.0%, and bias = -2.8%, and the SIT based on the MLR, the results were R² = 0.57, RMSE = 0.268 m, and bias = 0.103 m. In the SIT mapping, we highlight the trend of thickness reduction on the east coast of the Antarctic Peninsula during the period 1992-2009.


Assuntos
Camada de Gelo , Micro-Ondas , Clima , Temperatura , Regiões Antárticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...